Between Infinitary Logic and Abstract Elementary Classes

Andrés Villaveces - Universidad Nacional de Colombia - Bogotá

Encuentro de sociedades de matemáticas de Colombia y México
Barranquilla - Universidad del Norte - mayo/junio de 2018
CONTENTS

Beyond syntax?
Some origins in infinitary logic
Algebraically minded model theory

Back to syntax!
a.e.c.’s / The Presentation Theorem
A maximal logic

Back to syntax, really?
One of the questions that started the process was the problem of proving Categoricity Transfer, a Morley-like theorem, for the infinitary logic $L_{\omega_1,\omega}$.

Origins in logic
Origins in logic

One of the questions that started the process was the problem of proving Categoricity Transfer, a Morley-like theorem, for the infinitary logic $L_{\omega_1,\omega}$. Namely, is it true that if an $L_{\omega_1,\omega}$-sentence ψ is categorical in some uncountable cardinal, then it is categorical in all uncountable cardinals?
One of the questions that started the process was the problem of proving Categoricity Transfer, a Morley-like theorem, for the infinitary logic $L_{\omega_1,\omega}$. Namely, is it true that if an $L_{\omega_1,\omega}$-sentence ψ is categorical in some uncountable cardinal, then it is categorical in all uncountable cardinals? More generally, what is the behavior of the function $I(\psi, \lambda) := |\{M \models \psi \mid |M| = \lambda\}| / \approx |$, for a sentence ψ of the logic $L_{\omega_1,\omega}$?
LONG STORY SHORT

After many attempts, the analysis of that primal question ran off from the syntactic extreme (infinitary logic(s)) to a more semantic “extreme”.
Long story short

After many attempts, the analysis of that primal question ran off from the syntactic extreme (infinitary logic(s)) to a more semantic “extreme”. The attempts:

▶ (Keisler) Use “sequentially homogeneous” models. But sequential homogeneity is a consequence of categoricity...

▶ (Shelah) The role of models of size $\aleph_n (n < \omega)$ in the decomposition of large models, the role of dimension-like obstructions.

▶ (Shelah) Forcing-like approach to types that would eventually become “Galois types”.
Algebraically-minded model theory

Another early origin of Abstract Elementary Classes, complementary to the Categoricity problem, was Shelah’s idea of (as expressed in his paper *The Lazy Model-Theoretician’s Guide to Stability Theory* 1973)
Another early origin of Abstract Elementary Classes, complementary to the Categoricity problem, was Shelah’s idea of (as expressed in his paper *The Lazy Model-Theoretician’s Guide to Stability Theory* 1973) speaking mainly to “those who are interested in algebraically-minded model theory, i.e., generic models, the class of e-closed models and universal-homogeneous models rather than elementary classes and saturated models. These were his words in 1975. He continues: “our main point is that though stability theory was developed for the latter context, almost everything goes through in the wider context (with suitable changes in the definitions).
WHAT GOES THROUGH, REALLY?

This declaration (the “almost everything goes through”) entailed more than it could seem at first sight: in many ways it is true but it took a long time to build up the right notions of stability, of types, of independence.
Replacing formulas by an abstract notion of “strong embedding” between L-structures is the first important point. In the definition of AECs we do not declare membership in the class by satisfying some sentence or some axiomatic system. The relation $|=,$ basic in First Order logic, takes a back seat here, and the main relation \leq_K (a generalization of the elementary submodel relation \prec of first order) now leads the game.
Kennedy’s Formalism Freeness

All of this approach very much goes in line with other situations in mathematics where versions of “Formalism Freeness” (Kennedy) take up center stage. One of them is computability (Turing, Post, Gödel, Kleene, Church). Another one is Model Theory as a “generalized Galois theory”, as happens in AECs.
The definition [Abstract Elementary Class]

Fix a language L. A class \mathcal{K} of L-structures, together with a binary relation \leq_K on \mathcal{K} is an abstract elementary class (for short, AEC) if:

1. Both \mathcal{K} and \leq_K are closed under isomorphism. This means two things: first, if $M' \cong M \in \mathcal{K}$ then $M' \in \mathcal{K}$; second, if M', N' are L-structures with $M' \subseteq N'$, $M' \cong M$, $N' \cong N$ and $M \leq_K N$ then $M' \leq_K N'$.

2. If $M, N \in \mathcal{K}$, $M \leq_K N$ then $M \subseteq N$,

3. \leq_K is a partial order,

4. (Coherence) If $M \subseteq N \leq_K N'$ and $M \leq_K N'$ then $M \leq_K N$,

5. (LS) There is a cardinal (called “the Löwenheim-Skolem number” of the class) $\kappa = LS(\mathcal{K}) \geq \aleph_0$ such that if $M \in \mathcal{K}$ and $A \subseteq |M|$, then there is $N \leq_K M$ with $A \subseteq |N|$ and $|N| \leq |A| + LS(\mathcal{K})$.

6. (Unions of \leq_K-chains) If $(M_i)_{i<\delta}$ is a \leq_K-increasing chain of length δ (δ a limit ordinal), then

- $\bigcup_{i<\delta} (M_i)_{i<\delta} \in \mathcal{K}$,
- for each $j < \delta$, $M_j \leq_K \bigcup_{i<\delta} M_i$,
- if for each $i < \delta$, $M_i \leq_K N \in \mathcal{K}$ then $\bigcup_{i<\delta} M_i \leq_K N$.

MAIN CONJECTURE: THE MAIN GAP

The Main Gap Theorem for FO logic

(Saharon Shelah, c. 1980)
Main Conjecture: The Main Gap

The Main Gap Theorem for FO logic

(Saharon Shelah, c. 1980)

The “gold standard” of mathematical logic, of model theory, in various ways, and the main conjecture in AECs.
At this point, we have the following situation:

- So far, no control on possible axiomatization of the class \mathcal{K}. The emphasis is placed on its being closed under the constructions specified in the axioms. However, later (in subsection) we focus on the logical control of these classes. Remember Shelah’s “algebraically-minded model theory”.

- These are not necessarily amalgamation classes: there is no amalgamation axiom. However, many AECs do satisfy the amalgamation property. Furthermore, the model theory will depend on the kind of amalgamation possible in the class.
A “taxonomy” of classes of structures.
Dividing Lines

<table>
<thead>
<tr>
<th>stable</th>
<th>unstable</th>
<th>order property</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDOP</td>
<td>DOP</td>
<td>dimensional order property</td>
</tr>
<tr>
<td>NOTOP</td>
<td>OTOP</td>
<td>(omitting types) order property</td>
</tr>
<tr>
<td>superstable</td>
<td>unsuperstable</td>
<td>local control of \downarrow</td>
</tr>
<tr>
<td>depend. (NIP)</td>
<td>IP</td>
<td>codifying $a \in b \subset \omega$</td>
</tr>
<tr>
<td>etc. (NTP_2)</td>
<td>TP_2</td>
<td>tree properties...</td>
</tr>
</tbody>
</table>
Theorem (Shelah)

Let \((\mathcal{K}, \leq_K)\) be an AEC in a language \(L\). Then there exist

- A language \(L' \supset L\), with size \(LS(\mathcal{K})\),
- A (first order) theory \(T'\) in \(L'\) and
- A set of \(T'\)-types, \(\Gamma'\), such that

\[
\mathcal{K} = PC(L, T', \Gamma') := \{M' \upharpoonright L \mid M' \models T', M' \text{ omits } \Gamma'\}.
\]

Moreover, if \(M', N' \models T'\), they both omit \(\Gamma'\), \(M = M' \upharpoonright L\) and \(N = N' \upharpoonright L\),

\[
M' \subset N' \iff M \leq_K N.
\]
Corollary ("Hanf" number of an AEC)

If an AEC \mathcal{K} has a model of cardinality $\geq \beth_{(2^{LS}(\mathcal{K})^+}$ then it has arbitrarily large models.
Corollary ("Hanf" number of an AEC)

If an AEC \mathcal{K} has a model of cardinality $\geq 2^{LS(\mathcal{K})} +$ then it has arbitrarily large models.

Proof: Use the Hanf number for PC classes (this uses the undefinability of well orders - Lessmann, building on Väänänen and Shelah’s earlier arguments).

\[\square \]

Theorem (Shelah)

Let $(\mathcal{K}, \leq_\mathcal{K})$ be an AEC with amalgamation and arbitrarily large models. If \mathcal{K} is categorical in $\lambda > LS(\mathcal{K})$ then it is μ-galois-stable for each cardinal $\mu \in [LS(\mathcal{K}), \lambda)$.
Beyond syntax?

Back to syntax!

Back to syntax, really?
Beyond syntax?

Back to syntax!

Back to syntax, really?
BEYOND THE PRESENTATION THEOREM

The complexity of Projective Classes in the Presentation Theorem (the enlarged language) may be avoided at the price of axiomatizing an AEC via a sentence in a different logic.
Beyond the Presentation Theorem

The complexity of Projective Classes in the Presentation Theorem (the enlarged language) may be avoided at the price of axiomatizing an AEC via a sentence in a different logic. First response: Shelah (and Boney-Vasey): under categoricity of a proper class of cardinals, and a.e.c. \mathcal{K} may be axiomatized by a sentence in $L_{\infty,\omega}$.
Beyond the Presentation Theorem

The complexity of Projective Classes in the Presentation Theorem (the enlarged language) may be avoided at the price of axiomatizing an AEC via a sentence in a different logic. First response: Shelah (and Boney-Vasey): under categoricity of a proper class of cardinals, and a.e.c. \mathcal{K} may be axiomatized by a sentence in $L_{\infty,\omega}$. In general...
A strange, strange logic
The logic L^1_{κ}

There is a logic called L^1_{κ} (Shelah, 2007) in between $L_{\kappa,\omega}$ and $L_{\kappa,\kappa}$ (κ singular strong limit):

$$L_{\kappa,\omega} \subset L^1_{\kappa} \subset L_{\kappa,\kappa}$$

that has **many** desirable properties:
The logic L_{κ}^1

There is a logic called L_{κ}^1 (Shelah, 2007) in between $L_{\kappa,\omega}$ and $L_{\kappa,\kappa}$ (κ singular strong limit):

$$L_{\kappa,\omega} \subset L_{\kappa}^1 \subset L_{\kappa,\kappa}$$

that has many desirable properties:

- Undefinability of well-order (very weak compactness)
- Interpolation (it “balances” the interpolation problem between $L_{\kappa,\omega}$ and $L_{\kappa,\kappa}$):
 if $\phi \rightarrow \psi \in L_{\kappa,\omega}$, ϕ has vocabulary L_1, ψ has vocabulary L_2 then there is θ in the common vocabulary $L_1 \cap L_2$ such that $\phi \vdash \theta \vdash \psi$... BUT $\theta \in L_{\kappa,\kappa}$.
- Downward Löwenheim-Skolem
- Maximality for the previous properties (“Lindström”): any logic above $L_{\kappa,\omega}$ satisfying undefinability of well-order, occurrence below κ (for $\kappa = \beth_\kappa$ strong limit) interpolation and LS must be $\leq L_{\kappa}^1$.
THE CONNECTION WITH A.E.C.’S

(Work in progress, with Shelah)
For any a.e.c. \mathcal{K} with $\tau = \tau_{\mathcal{K}}$, $\kappa = LST_{\mathcal{K}}$, $\lambda = \beth_2(\kappa + |\tau|)^+$ there exists $\psi_{\mathcal{K}} \in L_{\lambda^+\kappa^+}(\tau)$ such that $\mathcal{K} = Mod(\psi_{\mathcal{K}})$.
The connection with a.e.c.’s

(Work in progress, with Shelah)
For any a.e.c. \(\mathcal{K} \) with \(\tau = \tau_{\mathcal{K}} \), \(\kappa = LST_{\mathcal{K}} \), \(\lambda = \beth_2(\kappa + |\tau|)^{+} \) there exists \(\psi_{\mathcal{K}} \in L_{\lambda^{+},\kappa^{+}}(\tau) \) such that \(\mathcal{K} = \text{Mod}(\psi_{\mathcal{K}}) \).

\(\psi_{\mathcal{K}} \) is in the same vocabulary as the class!!! (This provides some interesting return, some interesting symmetry to Kennedy’s description of a.e.c.’s in terms of Formalism Freeness!)
The connection with a.e.c.'s

(Work in progress, with Shelah)
For any a.e.c. \mathcal{K} with $\tau = \tau_{\mathcal{K}}$, $\kappa = LST_{\mathcal{K}}$, $\lambda = \beth_2(\kappa + |\tau|)^+$ there exists $\psi_{\mathcal{K}} \in L_{\lambda^+, \kappa^+}(\tau)$ such that $\mathcal{K} = \text{Mod}(\psi_{\mathcal{K}})$.

$\psi_{\mathcal{K}}$ is in the same vocabulary as the class!!! (This provides some interesting return, some interesting symmetry to Kennedy’s description of a.e.c.’s in terms of Formalism Freeness!)

Moreover,

$$\psi_{\mathcal{K}} \in L_{\kappa^*}^1, \quad \mathcal{K} \approx L_{\kappa^*}^1.$$
Lull
Really, back to syntax???

There are many issues related to L^1_{κ}:

- No actual definition of the syntax (instead, a game - see Väänänen’s lecture a few minutes from now)
Really, back to syntax???

There are many issues related to L^1_{κ}:

- No actual definition of the syntax (instead, a game - see Väänänen’s lecture a few minutes from now)
- No Consistency Properties attached to the logic
Really, back to syntax???

There are many issues related to L^1_κ:

- No actual definition of the syntax (instead, a game - see Väänänen’s lecture a few minutes from now)
- No Consistency Properties attached to the logic
- Only partial understanding of its power
ON THE EHRENFEUCHT-FRAÏSSÉ GAME

The syntax is really defined in terms of an Ehrenfeucht-Fraïssé “partial equivalence” game $G_{\Gamma,\theta,\alpha}(M_1, M_2)$:

- Player I chooses a sequence from M_1,

ON the EHRENFEUCHT-FRAÏSSÉ GAME

The syntax is really defined in terms of an Ehrenfeucht-Fraïssé “partial equivalence” game $G_{\Gamma,\theta,\alpha}(M_1, M_2)$:

- Player I chooses a sequence from M_1,
- Player II breaks the sequence into ω parts and chooses a sequence in M_2,
The syntax is really defined in terms of an Ehrenfeucht-Fraïssé “partial equivalence” game $G_{\Gamma,\theta,\alpha}(M_1, M_2)$:

- Player I chooses a sequence from M_1,
- Player II breaks the sequence into ω parts and chooses a sequence in M_2,
- Player I acts following the challenge from the breakup, on the FIRST piece and plays another sequence,
ON THE EHRENFEUCHT-FRAÏSSÉ GAME

The syntax is really defined in terms of an Ehrenfeucht-Fraïssé “partial equivalence” game $G_{\Gamma,\theta,\alpha}(M_1, M_2)$:

- Player I chooses a sequence from M_1,
- Player II breaks the sequence into ω parts and chooses a sequence in M_2,
- Player I acts following the challenge from the breakup, on the FIRST piece and plays another sequence,
- Player II acts following the challenge from the breakup, on the SECOND piece and plays another sequence,
Infinite debts, finite time

Descriptions by Väänänen in terms of “Infinite debts, finite time to pay off them” of the game. The point: Playing the game, I “opens up” space for possible answers - possible functions - and “simulates” the role of the expansion by predicates from the Presentation Theorem.

Mysteries:

- a strong syntax for L^1_κ,
- info from a.e.c.’s?
¡Gracias! Thank you for your attention!