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When is a logic “appropriate” for model theory?

(A natural question, perhaps). . . some answers.

▶ Of course, logics “similar to” Lω,ω , contLω,ω , . . . (they have

Löwenheim-Skolem, Compactness, Interpolation, etc.)

▶ Lω1,ω? Compactness fails.

▶ Lκ,λ. . . It depends strongly on κ (and λ)

▶ Väänänen says: “infinitary logic may still serve as a ‘yardstick’

for model theoretic constructs, permits fragments of model

theory and is preserved under (reasonable) forcing”. . .
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A map of various infinitary logics

?!?

Lκ,G

Lω1,G

Lκκ

L(Qwo
0 )

Lκω

Lω1ω

L(Q0)

L(QMM
1 )

L(aa)

L(Q1)
L(Qcf

ω )

L2

Lωω



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs
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Interpolation issues

▶ Craig(Lκ+ω , L(2κ)+κ+ ) (Malitz 1971).

If φ ⊢ ψ, where φ is a τ1-sentence and ψ is a τ2-sentence and
both are in Lκ+ω then

there exists χ ∈ L(2κ)+κ+ (τ1 ∩ τ2) such that

φ ⊢ χ ⊢ ψ.

▶ The original argument used “consistency properties”. Other

proofs have stressed the “Topological Separation” aspect of

Interpolation.
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So what about “balancing” Interpolation?

▶ Problem: Find L∗ such that

Lκ+ω ≤ L∗ ≤ L(2κ)+κ+

and Craig(L∗).

▶ Shelah, 2012: For singular strong limit κ of cofinality ω there is

a logic L1κ such that⋃
λ<κ

Lλ+ω ≤ L1κ ≤
⋃
λ<κ

Lλ+λ+

and Craig(L1κ).
▶ Moreover, in the case κ = ℶκ, the logic L1κ also has a

Lindström-type characterization as the maximal logic with a

peculiar strong form of undefinability of well-order.
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A first description of Shelah’s logic L1κ

▶ Shelah’s L1κ is not really defined as usual; rather, it is defined by

declaring what its elementary equivalence relation is.

▶ This elementary equivalence relation is given by an EF-game

type equivalence.

▶ Then. . .what is the syntax of Shelah’s logic?

▶ There are at least three partial answers, one approaching from

below (Väänänen-V.), the other one from above (Džamonja,

Väänänen), a third one modifying the length and the clock of

the game (Velickovic, Väänänen). We will focus on the first one.



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

A first description of Shelah’s logic L1κ

▶ Shelah’s L1κ is not really defined as usual; rather, it is defined by

declaring what its elementary equivalence relation is.

▶ This elementary equivalence relation is given by an EF-game

type equivalence.

▶ Then. . .what is the syntax of Shelah’s logic?

▶ There are at least three partial answers, one approaching from

below (Väänänen-V.), the other one from above (Džamonja,

Väänänen), a third one modifying the length and the clock of

the game (Velickovic, Väänänen). We will focus on the first one.



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

A first description of Shelah’s logic L1κ

▶ Shelah’s L1κ is not really defined as usual; rather, it is defined by

declaring what its elementary equivalence relation is.

▶ This elementary equivalence relation is given by an EF-game

type equivalence.

▶ Then. . .what is the syntax of Shelah’s logic?

▶ There are at least three partial answers, one approaching from

below (Väänänen-V.), the other one from above (Džamonja,

Väänänen), a third one modifying the length and the clock of

the game (Velickovic, Väänänen). We will focus on the first one.



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

A first description of Shelah’s logic L1κ

▶ Shelah’s L1κ is not really defined as usual; rather, it is defined by

declaring what its elementary equivalence relation is.

▶ This elementary equivalence relation is given by an EF-game

type equivalence.

▶ Then. . .what is the syntax of Shelah’s logic?

▶ There are at least three partial answers, one approaching from

below (Väänänen-V.), the other one from above (Džamonja,

Väänänen), a third one modifying the length and the clock of

the game (Velickovic, Väänänen). We will focus on the first one.



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

Shelah’s game Gβθ (M,N).

ANTI ISO

β0 < β, a⃗0

f0 : a⃗0 → ω, g0 : M → N a p.i.

β1 < β0, b⃗1

f1 : a⃗1 → ω, g1 : M → N a p.i., g1 ⊇ g0
.
.
.

.

.

.

Constraints:

▶ len(a⃗n) ≤ θ

▶ f–12n(m) ⊆ dom(g2n) for m ≤ n.
▶ f–12n+1(m) ⊆ ran(g2n) for m ≤ n.

ISO wins if she can play all her moves, otherwise ANTI wins.
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▶ M ∼β
θ N iff ISO has a winning strategy in the game.

▶ M ≡β
θ N is defined as the transitive closure ofM ∼β

θ N.

▶ A union of ≤ ℶβ+1(θ) equivalence classes of ≡β
θ for some θ < κ

and β < θ+ is called a sentence of L1κ.
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Shelah’s game Gβθ (M,N).
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The definition of L1κ-sentences - again

▶ ForM,N τ -structures, θ a cardinal, α ≤ θ an ordinal,M ∼β
θ N

iff ISO has a winning strategy in Gβθ (M,N),

▶ M ≡β
θ N is defined as the transitive closure ofM ∼β

θ N,

▶ A union of ≤ ℶβ+1(θ) equivalence classes of ≡β
θ for some θ < κ

and β < θ+ is called a sentence of L1κ.
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Comparison with other logics: where is L1κ?

⋃
λ<θ

Lλ+,ω ≤ L1≤θ ≤
⋃
λ<ℶθ+

Lλ+,λ+

Key Lemma for second dominance:

M1 ≡Lℶβ (θ)+,θ+ M2 (∀β < θ) =⇒ M1 ∼ G<θ+≤θ

M2

(Induction on β: if s is a state in G<θ+≤θ , φ(x̄) is a formula of Lℶβ (θ)+,θ+

such that

M1 |= φ[dom(gs)] ↔ M2 |= φ[ran(gs)]

then s is a winning state for ISO in G<θ+≤θ .)
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Crucial claim: closure under unions of ω-chains

Given (Mn)n<ω a sequence of τ -structures and given ψ(z̄) ∈ L1≤θ(τ ), if

Mn ≺L∂+,θ+ Mn+1 , for all n < ω, ∂ = ℶθ+

then

Mn ≡L1θ
Mω :=

⋃
n<ω

Mn

and

∀ā ∈ lg(z)M0 Mn |= ψ[ā] ⇔ Mω |= ψ[ā] for all n < ω.
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(Weak) Downward Löwenheim-Skolem for L1κ

Assuming κ = ℶκ,

for every sentence ψ ∈ L1κ, if there exists M such thatM |= ψ then

there exists a model N |= ψ, N of cardinality < κ.
for every ψ ∈ L1κ there is ∂ < κ such that: if N is a model of ψ of

cardinality λ and µ = µ<∂ then some submodelM of N of cardinality

µ is a model of ψ
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Undefinability of Well-Ordering

For this, the assumption κ = ℶκ seems crucial all along.

SUDWO (Strong Undefinability of Well Ordering):

If ψ ∈ L1κ(τ ), |τ | < κ, <, R are binary predicates, c1, c2 constants from
τ , THEN for every large enough µ1 < κ for arbitrarily large µ2 < κ
we have:

if λ > µ2, A is a τ -expansion of (H(λ),∈,µ1,µ2, <), with < the order
on ordinals, RA

being ∈, cA1 = µ1, cA2 = µ2. . . then there isB, an, dn
(n < ω) such that

▶ B |= ψ ⇔ A |= ψ,

▶ B |= dn+1 < dn < µ2 for n < ω,
▶ B |= an ⊆ an+1 has cardinality ≤ µ1,

▶ if e ∈ B andB |= |e| ≤ µ1 thenB |= e ⊆ an for some n
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A Lindström-like theorem

Let L be “a logic”, let κ = ℶκ. If L satisfies the following properties:

▶ L is nice (natural closure properties),

▶ the occurrence number of L is ≤ κ,

▶ Lθ+,ω ≤ L, for θ < κ,
▶ L satisfies SUDWO,

THEN

L ≤ L1κ.
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Approaching L1κ from below (mod ∆)

▶ Joint work with J. Väänänen
▶ We define a sublogic L1,cκ of L1κ (“Cartagena Logic”),

▶ L1,cκ has a recursive syntax.

▶ Many (but not all) of the nice properties of L1κ also hold for L1,cκ ,

▶ The “distance” between the two logics is not large (∆).



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

Syntax of L1,cκ

Suppose 2θ < κ. The formulas of L1,cκ,θ are built from atomic formulas

and their negations by means of the operation

∧
I,
∨

I, where |I| < κ,
and the following two operations:

Suppose ϕA (⃗x, y⃗), A ⊆ θ, are formulas of L1,cκ,θ such that of the

variables x⃗ = ⟨xα : α < θ⟩ only those xα for which α ∈ A occur free

in ϕA (⃗x, y⃗).

∀x⃗
∨
f

∧
n

ϕf–1(n) (⃗x, y⃗)

∃x⃗
∧
f

∨
n

ϕf–1(n) (⃗x, y⃗),

where x⃗ = ⟨xα : α < θ′⟩, θ′ ≤ θ and f : θ′ → ω.
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∀x⃗
∨
f

∧
n

ϕf–1(n) (⃗x, y⃗)

∃x⃗
∧
f

∨
n

ϕf–1(n) (⃗x, y⃗),

where x⃗ = ⟨xα : α < θ′⟩, θ′ ≤ θ and f : θ′ → ω.

L1,cκ =
⋃
θ<κ

L1,cκ,θ

Subformulas of such formulas are the ϕA (⃗x, y⃗), where A ⊆ θ′. Thus
the number of subformulas of such a formula is 2|θ

′|
.
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Cardinality qantifiers may be captured: |P| < θ

Example

Let θ < κ such that cof(θ) > ω. Let len(⃗x) = θ. The sentence

∀x⃗
∨
f

∧
n

(
∧
f(i)=n

P(xi) →
∨

i̸=j∈f–1(n)

(xi = xj))

says |P| < θ.
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An example of expressive power: no long chains

Example

Let θ < κ such that cof(θ) > ω. Let len(⃗x) = θ. The sentence

∀x⃗
∨
f

∧
n

∧
i̸=j∈f–1(n)

¬xi < xj

says < has no chains of length θ.
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A covering property: the combinatorial core of L1κ!

The combinatorial core of Shelah’s L1κ is captured by L1,cκ . . .

Example

Let θ < κ such that cof(θ) > ω. Let len(⃗x) = θ and len(⃗y) = ω. The
sentence

∀x⃗
∨
f

∧
n

∃y⃗
∧
g

∨
m

∧
f(i)=n

∨
g(j)=m

R(yj, xi)

says every set of size ≤ θ can be covered by countably many sets of

the form R(a, ·).

Corollary

Suppose θ < κ. There is a sentence in L1,cκ which has a model of
cardinality θ if and only if θω = θ.
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The EF-game of L1,cκ : Gβ,cθ (M,N).

β0 < β, a⃗0

f0 : a⃗0 → ω

n0 < ω
g0 : M → N a p.i.

β1 < β0, a⃗1

f1 : a⃗1 → ω,

n1 < ω
g1 : M → N a p.i. g1 ⊇ g0

.

.

.

.

.

.

Constraints:

▶ len(a⃗n) ≤ θ

▶ f–12i (n2i) ⊆ dom(g2i)
▶ f–12i+1(n2i+1) ⊆ ran(g2i).

Player II wins if she can play all her moves, otherwise Player I wins.
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Our “Cartagena” game Gβ,cθ (M,N).

a2 a1

a0

g1

g0

β2

β1

β0
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Theorem

The following are equivalent:

1. Player II has a winning strategy in Gβ,cθ (M,N).

2. M and N satisfy the same sentences of L1,cθ+ of quantifier rank ≤ β.

Corollary

L1,cκ ≤ L1κ.

Theorem

Assume κ = ℶκ. Then∆(L1,cκ ) = L1κ.
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What is ∆(L)?

▶ A model class K is Σ(L) if it is the class of relativized reducts of

an L-definable model class.

▶ A model class K is∆(L) if both K and its complement are Σ(L).
▶ ∆(Lωω) = Lωω
▶ ∆(Lω1ω) = Lω1ω

▶ ∆(∆(L)) = ∆(L)
▶ ∆ preserves compactness, axiomatizability, Löwenheim-Skolem

properties. . .
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Union Property of L1,cκ

Suppose Γ is a fragment of L1,cκ , i.e. a set of formulas closed under

subformulas.

Mn ≺Γ Mn+1 means that for formulas φ(x̄) in Γ and ā ∈ Mn we have

Mn |= φ(ā) → Mn+1 |= φ(ā).

Lemma (Union Lemma)

If Mn ≺Γ Mn+1 for all n < ω, thenMn ≺Γ Mω where Mω =
⋃

nMn.



A story of two logics Connections with large cardinals and forcing Bonus: logics to capture aecs

Proof of the Union Lemma

Lemma (Union Lemma)

If Mn ≺Γ Mn+1 for all n < ω, thenMn ≺Γ Mω where Mω =
⋃

nMn.
Proof: Easy direction: Mn |= ∃x̄

∧
f

∨
n φf–1(n)(x̄, ā) implies

Mω |= ∃x̄
∧

f

∨
n φf–1(n)(x̄, ā).

“Hard direction:” Mn |= ∀x̄
∨

f

∧
n φf–1(n)(x̄, ā) impliesMω |= ∀x̄

∨
f

∧
n φf–1(n)(x̄, ā).

So let A ∈ [Mω]θ , θ < κ. We treat A ∪Mm separately for each m.

Since Mm |= ∀x̄
∨

f

∧
n φf–1(n)(x̄, ā), there is fm : A ∩Mm → ω such that

Mm |=
∧

n φf–1m (n)(A ∩Mm, ā). Let (e.g.) f(a) = 2m · 3fm(a)
for the smallest m such that

a ∈ Mm. This f is the move of II. Then I plays m.

Claim

Mω |= φf–1(m)(A ∩ f–1(m), ā).

But this follows from the Induction Hypothesis as A∩ f–1(m) = A∩ f–1k (m′) for some

m′, k andMk |= φf–1k (m′)(A ∩ f–1k (m′), ā). □
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n φf–1m (n)(A ∩Mm, ā). Let (e.g.) f(a) = 2m · 3fm(a)
for the smallest m such that

a ∈ Mm. This f is the move of II. Then I plays m.

Claim

Mω |= φf–1(m)(A ∩ f–1(m), ā).
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A conseqence of the Union Lemma

Theorem

Assume κ = ℶκ. Then∆(L1,cκ ) = L1κ.

Further properties include

▶ LS theorems

▶ Undefinability of well order

▶ ∆(Lcκ) contains any logic that satisfies the Union Lemma for

≺θ+θ+ , for arbitrary large θ < κ. Shelah’s L1κ is one such logic.

Note: Undefinability of well-order is a consequence of the LS

property and the Union Lemma.
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The advantages of L1,cκ

▶ Simple syntax.

▶ Can express what L1κ does, at least implicitly.

▶ Its ∆-extension has Craig and Lindström Theorem.

▶ Undefinability of well-ordering is (also) a consequence of

Caicedo’s theorem on rigid structures and Uniform Reducibility

of Pairs.
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Plan

A story of two logics

Around Shelah’s logic L1κ
Basic properties of L1κ
Cartagena Logic L1,cκ

Connections with large cardinals and forcing

Virtual Large Cardinals

Virtuality and Forth Games: Characterizations of Compactness

Virtualization of a Logic

L1θ , when θ is strongly compact

The virtualization of L1κ, of L
1,c
κ

Delayable, and Virtually Delayable Cardinals

Bonus: logics to capture aecs
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Virtually Large

▶ Schindler (2000): remarkable cardinals are equiconsistent with

“Th(L(R)) cannot be changed by proper forcing.”

▶ Later, the (complicated) definition of remarkability was proved

by Schindler to be equivalent to being “virtually supercompact”.

▶ Idea: a large cardinal defined by properties of an elementary

embedding

j : V → M

can be “virtualized” by requiring the embedding to exist in a

set-forcing extension of V.
▶ Virtual(ized) large cardinals are still large cardinals, but are

now in the neighborhood of an ω-Erdős cardinal; they are

consistent with L.
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Virtually Large Cardinals

▶ A cardinal κ is virtually supercompact (remarkable) if for

every λ > κ, there is α > λ and a transitiveM with
λM ⊆ M

such that there is a virtual elementary embedding j : Vα → M
with crit(j) = κ and j(κ) > λ.

▶ Similarly [Dimopoulos, BDGM], virtually Woodin, virtually

extendible, virtually measurable, etc.

▶ A cardinal κ is virtually extendible if for every α > κ, there is
a virtual elementary embedding j : Vα → Vβ with crit(j) = κ
and j(κ) > α.
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Back to logic: the strong compactness cardinal of a

logic

In 1971, Magidor proved that extendible cardinals are strong
compactness cardinals for second-order infinitary logic L2κ,κ. This
means that every < κ-satisfiable theory in this logic is satisfiable.

In their preprint Model Theoretic Characterizations of Large

Cardinals, Boney, Dimopoulos, Gitman and Magidor [BDGM]

generalize Magidor’s early result to virtually extendible cardinals.

Theorem (BDGM)

κ is virtually extendible iff every < κ-satisfiable L2κ,κ-theory has
a. . .pseudo-model.
They introduce the filtering of “being a model” (compactness) to

“being a pseudo-model” (pseudo-compactness) and get the

equivalence with virtuality.
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Pseudo-models and forth-systems

So. . .what are these “filtered” models?

Definition

Let T be a τ -theory in some logic L, letM be a τ∗-structure.
A forth system F from τ to τ∗ is a collection of renamings

f : σ → σ∗, with σ,σ∗ finite subsets of τ , τ∗ respectively, such that

1. ∅ ∈ F ,

2. If f ∈ F and τ0 ⊆fin τ then there is g ∈ F with f ⊆ g and
τ0 ⊆ dom(g)

M is a pseudomodel for T if there is a forth system F from τ to τ∗

such that for every f ∈ F , M |= f ′′∗T
dom(f)

.
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Pseudo-models: a picture

The notion of pseudomodel deals with

▶ localizing in coherent ways (sheaflike

construction) the notion of being a model,

▶ through forth-systems between

vocabularies, that

▶ are connected with forcing notions whose

generic would precisely be a bijection
f : τ → τ∗

.

▶ From this bijection one constructs

j : Vα → Vβ with critical point κ. All of this
may be encoded in a correct theory in the

logic L2κ,κ.

▶ The other direction uses the virtual

embedding to obtain the forth system.

▶ Motto: forth-systems between vocabularies

≡ forcing notions for virtuality

M is a pseudomodel for T if there is a

forth system F from τ to τ∗
such that for

every f ∈ F , M |= f ′′∗T
dom(f)
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Pseudomodels
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Virtualization of a Logic

A related notion: the virtualization of a logic. Using forth-systems

for models (and not for vocabularies, as above).

An L-forth system P fromM to N (both τ – structures) is a
collection of L-elementary embeddings with the “forth property”:

1. ∅ ∈ P ,

2. if f ∈ P , a ∈ M then there is g ⊇ f in P such that a ∈ dom(g).

This is equivalent to playing the classical Ehrenfeucht-Fraïssé game

but with ANTI picking only challenges “from the left” (fromM).

[BDGM] use this to get Löwenheim-Skolem-Tarski style

characterizations of virtual cardinals: the existence of a virtual
elementary embedding f : M → N is equivalent to the existence of

a forth system fromM to N or that N satisfies the virtualized logic
theory of M (or ISO has a winning strategy in the half (virtual)

game). . .
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A direction worth looking at: L1θ for θ strongly
compact

Shelah has been able to extract interesting model theory from the

blend of the definition of L1θ under the additional assumption
that θ is a strongly compact cardinal:

▶ A “Keisler-Shelah”-like theorem (L1θ-elementarily equivalent

models have isomorphic iterated ultrapowers)

▶ Special models (unions of ω-chains of iterated ultrapowers are

unique. . . giving easier proofs of Craig (essentially, showing

Robinson and using compactness).

▶ Connections to stability theory.

The methods are connected with Malliaris-Shelah’s constructions

and also with careful use of saturation, not unlike the use of forth

models in [BDGM].
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Virtualizing L1κ, L
1,c
κ , . . .

There are at least two competing virtualizations of these logics:

▶ Use the definition from [BDGM]. . . but with the difficulty of not

having a good grasp (in the case of Shelah’s logic) of

elementary embeddings. . .

▶ Use a “virtualized” version of the Shelah (or the Cartagena)

game Gβθ , Gβ,cθ . . .

Both virtualized versions are essentially existential closures of the

logics. They would give rise to two competing notions of virtual

embeddings (or different notions of genericity!). So. . .which one?
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Delayable, virtually delayable. . .

Definition

A cardinal κ is a delayable cardinal if it is a compactness cardinal for

the second-order version of Shelah’s logic L2κ. It is a virtually
delayable cardinal if it is a pseudo-compactness cardinal for L2κ.
If we replace L2κ by L2,cκ we get the corresponding two notions of

Cart-delayable cardinal and virtually Cart-delayable cardinal.

1. Where are these cardinals located? What kind of reflection

properties do they capture?

2. The deeper issue is: what kind of virtuality do they actually

correspond to? What version of forth-systems?
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L1,cκ

L1κ
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The canonical tree of an a.e.c.

This is joint work with Saharon Shelah.

Fix an a.e.c. K with vocabulary τ and LS(K) = κ.
Let λ = ℶ2(κ + |τ |)+.
The canonical tree of K:

▶ Sn := {M ∈ K | for some ᾱ = ᾱM of length n,M has universe{
a∗α | α ∈ Sᾱ[M]

}
and m < n ⇒ M ↾ Sᾱ↾m[M] ≺K M

}
(and

S0 =
{
Mempt

}
),

▶ S = SK :=
⋃

n Sn; this is a tree with ω levels under ≺K
(equivalenty under ⊆).
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S(K)
κ · ω

S3

S1

S2

S = S(K)κ · 4

κ · 3

κ · 2

κ
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Formulas φM,γ,n(x̄n)
For M in the canonical tree S at level n, a formula with κ · n free

variables, defined by induction on γ.

▶ γ = 0: φ0,0 = ⊤ (“truth”). If n > 0,

φM,0,n :=
∧

Diagnκ(M),

the atomic diagram ofM in κ · n variables.

▶ γ limit: Then

φM,γ,n(x̄n) :=
∧
β<γ

φM,β,n(x̄n).

▶ γ = β + 1: Then φM,γ,n(x̄n) is the Lλ+,κ+ (τ ) formula

∀z̄[κ]
∨

N≻KM
N∈Sn+1

∃x̄=n

φN,β,n+1(x̄n+1) ∧
∧

α<αn[N]

∨
δ∈S[N]

zα = xδ
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Testing the class against the tree - DoesM ∈ K?

M

S = S(K)
κ

κ · 2

κ · 3

κ · 4

κ · ω
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So we have sentences φγ,0, for γ < λ+, such that i < j < λ+ implies

φj → φi. These sentences are better and better approximations of

the aec K; they describe how small models of the class embed into

arbitrary ones.

Let us take a closer look at low levels:
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The catch (beginnings)

When does M |= φ1,0?

When in M,

∀z̄[κ]
∨

N∈M1
∃x̄=0

[
φN,0,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]

That is, for every subset Z ofM of size ≤ κ some model N in the tree

(level 1, of size κ) embeds intoM, covering Z.

When does M |= φ2,0?

When in M,

∀z̄[κ]
∨

N∈M1
∃x̄=0

[
φN,1,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]
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This is slightly more complicated to unravel:

∀z̄[κ]
∨

N∈M1
∃x̄=1

[
φN,1,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]
For every subset Z of M of size ≤ κ some model N in the tree (at

level 1)M is such thatM |= φN,1,1, through some “image of N”
covering Z. . .
for all Z′ ⊂ M of size κ there is some N′ ≻K N in the canonical tree,

at level 2, extending N, such that some tuple x̄=2 fromM covers Z′

and is the “image” of N′
by an embedding
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The mezcal test - DoesM ∈ K?

M

S = S(K)
κ

κ · 2
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κ · ω
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Theorem

M ∈ K implies M |= φγ,0 for each γ < λ+
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Theorem

M |= φℶ2(κ)++2,0 implies M ∈ K
This much harder implication requires understanding the tree of

possible embeddings of small models; the partition property due to

Komjath and Shelah is the key. . .

The same partition property that worked for Väänänen and

Velickovic’s reduction of the game!
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The tree property enables us to “reconstruct”M (satisfying φλ+2,0 as

a limit of models of size κ, in the class K).

With this we can

▶ define “quantificational depth” of an aec (variants of

Baldwin-Shelah (building on Mekler and Eklöf) give examples

of high quantificational depth). . .

▶ get definability of the “strong submodel relation” ≺K . . . and

genuine variants of a Tarski-Vaught test

▶ a grip on biinterpretability of AECs. . .
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The End (Matta: The Integral of Silence)

¡Gracias! Diosï meyamu! Fié nzhinga!
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