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As an introduction / Disclaimer

I adapt part of a lecture given in Brazil in December 2018 (Cantor
Meets Robinson) centered on model-theoretic forcing.
The audience here is more focused on different issues: sheaf-forcing.
You may consult in my webpage the other part of the lecture, if
interested (Nájar might look at connections between forcing and
abstract elementary classes).
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Chapter 1

Forcing on Sheaves/Topoi
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A unified perspective

We have seen so far:

▶ Model Theoretic Forcing and its Connection with Model
Companions, Interpolation and Approximation Problems.

▶ The notion of genericity in Fraïssé/Hrushovski constructions
and its connection with Model Companions (and thereby with
Model Theoretic Forcing).

▶ A more contemporary take on model theoretic forcing, in
“Reflection Classes”, allowing to capture abstract forms of
homogeneity through limit (brimmed) models.

We now take a tour through forcing on sheaves, and illustrate how
it generalizes the previous (and set-theoretic forcing), and provides a
natural framework.
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Extended Objects / Variable Objects

Objects in the world present themselves as extended in time (or in
other classical (or non-classical) “categories”):
▶ Physical objects, individuals, etc.

▶ Particles, even neutrinos (for some particles, order of 10−20
seconds, yet still “time”)

▶ Concepts? Thoughts? Ideas? Visualizations? Perceptions?

Leibniz, Peirce, Husserl, etc.
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Yet logic (at the limit) is "too rough"

(Really, classical logic.)

▶ For p and r the predicate “is in
the green zone” is clear - classical
logic “agrees” with perception.

▶ For q and s (at “limit
situations”) classical logic forces
one to make a decision (open,
closed green zone, etc.).

▶ Perception does not follow
classical logic.
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Physics, geometry, and “limit” phenomena

As we know since the late 1920’s, Physics (wave models, quantum
phenomena of “undecidability” or “uncertainty”,
noncommutativity of operators corresponding to formalizations of
observability, etc.) has the kind of “limit phenomena” that may call
for a logic of variable entities.

Algebraic geometry of the postwar period (Leray, Cartan, Weil, and
then Grothendieck reflects this same “shift of perspective”: sheaves,
sites, topoi.)
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Instant velocity / Paradigm change

Instant velocity has exactly the same behavior as “the color of
point”: it really is an abstraction of a property of neighborhoods.
Excluded middle may be dropped!
The strong paradigm becomes Truth Continuity.
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Truth Continuity

If an individual (an entity, a particle, etc.) has some
property on some point of its domain of extension,
there has to be a neighborhood of this point in this
domain in which this property holds of all points.
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Sheaves over topological spaces

Fix X a topological space. The pair (E, p) is a sheaf over X if and
only if E is a topological space and p : E→ X is a surjective local
homeomorphism.

The previous conditions imply various things:

▶ The topology induced on the fibers p−1(a) ⊂ E is discrete, for
every a ∈ X,

▶ The (images of) sections σ form a basis for the topology of E (a
section is a continuous partial inverse of p defined on an open
set U ⊂ X),

▶ If two sections σ, τ coincide at a point a then there exists an
open set U ∋ a such that σ ↾ U = τ ↾ U
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Sections - objects
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Classical and not
1

Cildo Meireles - Fontes

1Caicedo: Lógica de los Haces de Estructuras - Revista Academia Colombiana
de Ciencias, 1995
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A little history

Sheaves over topological spaces go back to H. Weyl (1913), in his
work on Riemann surfaces.
They “reappear” strongly in Cartan’s seminar (1948-1952) and then
catch flight with the French Algebraic Geometry School of the
Postwar (Serre, Leray, etc.).
Weil: Séminaire de géométrie algébrique: study of the zeta function
on finite fields.
Finally, Grothendieck generalizes further the frame (to sites =
small categories endowed with “Grothendieck topologies”).
Deligne then proves Weil’s conjectures.
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Sheaves of Structures

A sheaf of structures A over X consists of:
1. A sheaf (E, p) over X,
2. On every fiber p−1(a) (a ∈ X), a structure

Aa = (Ea, (R
a
i )i, (f

a
j )j, (c

a
k)k, )

such that Ea = p−1(a), and
▶ For every i, RAi =

⋃
x∈X R

Ax

i is open
▶ For every j, fAj =

⋃
x∈X f

Ax

j is continuous
▶ For every k, cAk : X→ E such that x 7→ cAx

k is a continuous
global section
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Truth Continuity?

Fact
For all atomic formulas φ(v) we have that

Ax |= φ(σ(x)) iff ∃U ∋ x∀y ∈ U
(
Ay |= φ(σ(y))

)
This also holds for positive Boolean combinations of atomic
formulas.
However, this fails for negations!

The solution to this failure is to switch to an emphasis on forcing.
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Satisfaction and forcing (pointwise and local)

Three notions: satisfaction at each fiber, forcing at a point x ∈ X,
forcing at a (non-empty) open set U ⊂ X:

Ax |= φ(σ(x))
A ⊩x φ(σ)

A ⊩U φ(σ)
How do we compare them? Before diving into the definitions of the
forcing notions, notice that the first one is pointwise while the
second one is local. Also notice that satisfaction in Ax is about
values of sections at x (the σ(x)) whereas pointwise (over x) or local
forcing (over U) are about the whole section σ defined on U.
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Truth continuity - I

Given a formula φ(v) of Lt, we define its forcing by A at a ∈ X in
such a way that

if A ⊩a φ[σ(a)] then there exists an open neighborhood U of x
such that for every b ∈ U we also have A ⊩b φ[σ(b)].

Sections are the new objects: formulas φ(v1, v2, · · · ) will be
“evaluated” by “replacing” vi by a section σi or by its value at an
element x of X, σi(x).
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Pointwise forcing

▶ For atomic φ and t1, · · · , tn terms,
A ⊩x (t1 = t2)[σ⃗] ⇔ tAx

1 [σ⃗(x)] = tAx
2 [σ⃗(x)]

similarly for relation symbols.

▶ A ⊩x (φ∧ ψ) ⇔ A ⊩x φ and A ⊩x ψ.
▶ A ⊩x (φ∨ ψ) ⇔ A ⊩x φ or A ⊩x ψ.
▶ A ⊩x ¬φ⇔ for some open U ∋ x, for every y ∈ U, A ̸⊩y φ.
▶ A ⊩x (φ→ ψ) ⇔ for some open U ∋ x, for every y ∈ U, A ⊩y φ implies

that A ⊩y ψ.
▶ A ⊩x ∃vφ(v, σ⃗) ⇔ there exists some σ defined at x such that A ⊩x φ[σ, σ⃗].
▶ A ⊩x ∀vφ(v, σ⃗) ⇔ for some U ∋ x, for every y ∈ U and every σ defined on
y, A ⊩y φ[σ, σ⃗].

Forcing ¬,→, ∀ at x requires information “around” x. It is an
exercise to check Truth Continuity for ⊩x.
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Truth continuity - II

A semantics can also be defined directly over open sets:

A ⊩U φ[σ],

where U is an open set in the domain of σ.

Definition
A ⊩U φ[σ] if and only if for every x ∈ U, A ⊩x φ[σ(x)].
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Chapter 2

Genericity
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Generic Filters

Definition
Given A a sheaf of structures over X, a generic filter F for A is a filter of open sets
of X such that

▶ for every φ(σ) and every σ defined on U ∈ F, there is someW ∈ F such that
A ⊩W φ(σ) or A ⊩W ¬φ(σ)

▶ for every σ defined on U ∈ F, for every φ(u, σ), if A ⊩U ∃uφ(u, σ), then
there existsW ∈ F and µ defined onW such that A ⊩W φ(µ, σ)

For some topological spaces, this definition of genericity of a filter
may be made more purely topological/geometrical (and less
dependent on formulas and forcing). However, in the general case,
this is not necessarily possible - and we must rely on this logical
definition.
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Existence - generic models

Fact
Generic filters exist.

Definition (Generic Models)
Given a generic filter F and A(U) = {σ|dom(σ) = U}, let

A[F] = lim
U∈F

A(U) =
⊔
U∈F

A(U)/ ∼F

where σ ∼F µ iff there existsW ∈ F such that σ ↾W = µ ↾W.
Also,

▶ (σ1/ ∼F, . . . , σn/ ∼F) ∈ RA[F] ⇔ ∃U ∈ F(σ1, . . . , σn) ∈ RA(U)

▶ fA[F](σ1/ ∼F, . . . , σn/ ∼F) = f
A(U)(σ1, . . . , σn)/ ∼F
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Limits

Theorem (A classical Generic Model Theorem)
Let F be a generic filter for a sheaf of topological structures A over X.
Then

A[F] |= φ(σ/ ∼F) ⇐⇒ {x ∈ X|A ⊩x φ
G(σ(x))} ∈ F⇐⇒ ∃U ∈ F such that A ⊩U φ

G(σ).

Here, φG is a formula equivalent classically to φ, but not
necessarily in an intuitionistic framework! (The formula φG is
sometimes called the Gödel translation of φ - in 1925, Kolmogorov
had independently defined an equivalent translation.)
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More on the Generic Model Theorem

Cohen’s construction of generic models for set theory is the first
published result along these lines. Later, Robinson, Barwise and
Keisler used generic model theorems to get Omitting Types
Theorems in various logics, generalized by Caicedo. Ellerman’s
“ultrastalk theorem” (1976) is a GMTh for maximal filters. Miraglia
also proves a similar result for Heyting-valued models.

The model
A[F] can be regarded as a “fiber at ∞”. This may be made precise by
extending X by one new point ∞, adding the generic model as the
new fiber over ∞ and extending the sections by

σ 7→ σ∗ = σ ∪ {(∞, [σ]∼F)}.

Then, the GMTh just means that in the new sheaf A∞ this fiber is
classic:

A∞ ⊩∞ φ(σ∗1, · · · , σ∗n) ⇔ A[F] |= φ([σ∗1], · · · , [σ∗n])
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The fiber “at infinity”

The model A[F] can be regarded as a “fiber at ∞”. This may be
made precise by extending X by one new point ∞, adding the
generic model as the new fiber over∞ and extending the sections by

σ 7→ σ∗ = σ ∪ {(∞, [σ]∼F)}.

Then, the GMTh just means that in the new sheaf A∞ this fiber is
classic:

A∞ ⊩∞ φ(σ∗1, · · · , σ∗n) ⇔ A[F] |= φ([σ∗1], · · · , [σ∗n])
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Other applications of the GMTh

▶ Kripke models - generalized semantics
▶ Set-theoretic forcing
▶ Robinson’s Joint Consistency Theorem (=Amalgamation over

Models)
▶ Various Omitting Types Theorems (Caicedo,

Brunner-Miraglia)
▶ Control over new kinds of limit models
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Chapter 3

Continuous sheaf forcing
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Sheaves of Hilbert Spaces

Why?

(Geraldo Barros)

1. Hilbert Spaces are (still) a crucial tool for formalization of
concepts and objects in Physics and in Chemistry

2. In Physics: really algebras of operators acting on Hilbert spaces.
3. In Chemistry: really predicates on Hilbert spaces.
4. In both, the dynamical properties of evolution of a system are

relevant.
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The problem of a model theory for Hilbert Spaces

So, we want to be able to put Hilbert spaces (and more structure on
top of them, such as predicates for reactions, or operators for
observables) on fibers.
We could in principle do that as we have seen so far, but
immediately we get the problem that we may get lots of
non-standard Hilbert spaces (infinitesimals, etc.).
Moreover, we want the logic to “keep track” of (say) the distance to
a projection p(v), the convergence of a sequence in H, isometric
isomorphism, (1+ ε)-isomorphism, etc. etc.
Finally, we need to be able to take limits of Cauchy sequences at will
in our structures: metric completeness is crucial.
That is the rôle of Continuous Model Theory .
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Sheaves of Metric Structures

A sheaf of metric structures A over X consists of:

1. A sheaf (E, p) over X,

2. On every fiber p−1(x) (x ∈ X), a metric structure

(Ax, dx) = (Ex, (R
x
i )i, (f

x
j )j, (c

x
k)k, dx, [0, 1])

such that Ex = p−1(x), (Ex, dx) is a complete bounded metric space of
diameter 1, and
▶ For every i, RAi =

⋃
x∈X R

x
i is open

▶ For every j, fAj =
⋃

x∈X f
x
j is continuous

▶ For every k, cAk : X→ E such that x 7→ cxk is a continuous
global section

▶ The premetric dA :=
⋃

x∈X dx :
⋃

x∈X E
2
x → [0, 1] is a

continuous function.

(further requirements on moduli of uniform continuity)
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Truth Continuity - adapted to metric

Truth Continuity is still the guiding paradigm. Remember in the
“discrete” case, negation was the first stumbling block - the first
place where forcing was needed in a non-trivial way.
Here, in “CFO” logic, the semantics is defined on conditions of the
form

φ(x) < ε,φ(x) ≤ ε, · · ·

Negation in continuous, metric logic, is weak: the semantics really treats
≤ and ≥ as “negations” of each other...
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Pointwise forcing

With M. Ochoa, we define A ⊩x φ < ε and A ⊩x φ > ε, for x ∈ X:
▶ Atomic: A ⊩x d(t1, t2) < ε⇔ dx(t

Ax
1 , tAx

2 ) < ε

A ⊩x d(t1, t2) > ε⇔ dx(t
Ax
1 , tAx

2 ) > ε
A ⊩x R(t1, · · · , tn) < ε⇔ RAx(tAx

1 , tAx
2 ) < ε

A ⊩x R(t1, · · · , tn) > ε⇔ RAx(tAx
1 , tAx

2 ) > ε

▶ A ⊩x max(φ,ψ) < ε⇔ A ⊩x φ < ε and A ⊩x ψ < ε. Sim. for >.
▶ A ⊩x min(φ,ψ) ⇔ A ⊩x φ or A ⊩x ψ. Sim. for >.
▶ A ⊩x 1

.
− φ < ε⇔ A ⊩x φ > 1

.
− ε. Sim. for >.

▶ A ⊩x φ
.
− ψ < ε iff and only if one of the following holds:

▶ A ⊩x φ < ψ
▶ A ̸⊩x φ < ψ and A ̸⊩x φ > ψ
▶ A ⊩x φ > ψ and A ⊩x φ < ψ+ ϵ.

▶ A ⊩x φ
.
− ψ > ε iff A ⊩x φ > ψ + ε

▶ · · ·
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Pointwise forcing - continued

Quantifiers:
▶ A ⊩x infs∈Ax φ(s) < ε iff there exists a section σ such that A ⊩x φ(σ) < ε.

▶ A ⊩x infsφ(s) > ε iff there exists an open set U ∋ x and a real number
δx > 0 such that for every y ∈ U and every section σ defined on y,
A ⊩y φ(σ) > ε + δx

▶ A ⊩x sup
s
φ(s) < ε iff there exists an open set U ∋ x and a real number

δx > 0 such that for every y ∈ U and every section σ defined on y,
A ⊩y φ(σ) < ε − δx

▶ A ⊩x infs∈Ax φ(s) > ε iff there exists a section σ such that A ⊩x φ(σ) > ε.
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A metric on sections? (Not yet)

So far so good, but we have (for the time being) lost the metric on
the sections (so, the corresponding presheaves A(U) are still missing
the “metric” feature - they do not live in the correct category yet).
▶ Sections have different domains
▶ Triangle inequality is tricky
▶ Restrict to sections with domains in a filter of open sets
▶ But the ultralimit (even in that case) could fail to be complete!
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Rather... a pseudometric

Fix F a filter of open sets of X. For all sections σ and µ with domain
in F define

Fσµ = {U ∩ dom(σ) ∩ dom(µ)|U ∈ F}.

Then the function

ρF(σ, µ) = inf
U∈Fσµ

sup
x∈U

dx(σ(x), µ(x))

is a pseudometric on the set of sections with domain in F.
In some cases we may get completeness of the induced metric:

Lemma (Ochoa, V.)
Let A be a sheaf of metric structures defined over a regular topological
space X. Let F be an ultrafilter of regular open sets. Then, the metric
induced by ρF on A[F] is complete.
Other solutions include just working with pseudometrics and give
up completeness, or even working with more general frameworks.



Forcing on Sheaves/Topoi Genericity Continuous sheaf forcing

Rather... a pseudometric

Fix F a filter of open sets of X. For all sections σ and µ with domain
in F define

Fσµ = {U ∩ dom(σ) ∩ dom(µ)|U ∈ F}.

Then the function

ρF(σ, µ) = inf
U∈Fσµ

sup
x∈U

dx(σ(x), µ(x))

is a pseudometric on the set of sections with domain in F.
In some cases we may get completeness of the induced metric:

Lemma (Ochoa, V.)
Let A be a sheaf of metric structures defined over a regular topological
space X. Let F be an ultrafilter of regular open sets. Then, the metric
induced by ρF on A[F] is complete.
Other solutions include just working with pseudometrics and give
up completeness, or even working with more general frameworks.



Forcing on Sheaves/Topoi Genericity Continuous sheaf forcing

Local Forcing for Metric Structures

Forcing over an open set is somewhat more tricky in this case. We
have the following definition.

Definition
Let A be a sheaf of metric structures defined on X, ε > 0, U open in
X, σ1, · · · , σn sections defined on U. Then
▶ A ⊩U φ(σ) < ε⇐⇒ ∃δ < ε∀x ∈ U(A ⊩x φ(σ) < δ)

▶ A ⊩U φ(σ) > δ⇐⇒ ∃ε > δ∀x ∈ U(A ⊩x φ(σ))

There is an involved, equivalent, inductive definition. We also have
A ⊩U infσ(1

.
− φ(σ)) > 1

.
− ε⇐⇒ A ⊩U supUφ(σ) < ε, and a

maximal principal principle (existence of witnesses of sections).
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Metric Generic Model / Forcing Theorem

For the appropriate notion of genericity, we build the generic model
as in the discrete case. The definition of genericity guarantees the
completeness of A[F].

Theorem (Metric GMTh)
Let F be a generic filter on X, A a sheaf of metric structures on X and
σ1, · · · , σn sections. Then
1. A[F] |= φ([σ1]/∼F, · · · , [σn]/∼F) < ε⇐⇒ ∃U ∈ F such that

A ⊩U φ(σ1, · · · , σn) < ε
2. A[F] |= φ([σ1]/∼F, · · · , [σn]/∼F) > ε⇐⇒ ∃U ∈ F such that

A ⊩U φ(σ1, · · · , σn) > ε
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A Metric Sheaf for noncommuting observables with

continuous spectra

Really, a metric sheaf space for a free particle:

Definition
The triple Acont = (E, X, π) where
▶ X = R+ is the base space with the product topology.
▶ For τ ∈ X we let Eτ be a two sorted metric model where

▶ Uτ and Vτ span the universe for each sort.
▶ Every sort has is a metric space with the metric induced by the

norm in L2(R).
▶ Every sort is a model in the language of a vector space, with

symbols for the binary transformation ⟨, ⟩V and ⟨, ⟩U, to be
interpreted such that
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A Metric Sheaf for noncommuting observables with

continuous spectra

▶

⟨q(x0 − x)ϕ(τ,t1)(x0 − x),r(x1 − x)ϕ(τ,t1)(x1 − x)⟩U
=q(x0 − x1)r(x0 − x1)ϕ(τ,t1+t2)(x0 − x1)

(1)
⟨q(p0 − p)ϕ1/(τ,t1)(p0 − p),r(p1 − p)ϕ1/(τ,t1)(p1 − p)⟩V

=q(p0 − p1)r(p0 − p1)ϕ1/(τ,t1+t2)(p0 − p1)
(2)

▶ function symbols for FT and FT−1 (Fourier transforms between the
operators)

▶ The sheaf is constructed as the disjoint union of fibers: E = ⊔τ∈XEτ

▶ Sections are defined such that if τ ∈ U ⊂ X,
σq,x0,p0,t(τ) =

(
q(x− x0ϕ(τ,t)(x, x0) , q(p− p0)ϕ1/(τ,t)(p, p0)

)
.

▶ π, the local homeomorphism, is given by π(ψ) = τ if ψ ∈ Eτ.
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Remarks

▶ The binary transformations ⟨, ⟩U and ⟨, ⟩V are not the objects
usually defined as the inner product in a Hilbert space. Instead,
they are our representation for the physical inner product as
defined by Dirac in each sort.

▶ We are interested in two kinds of generic metric models:
1. In the first kind we look at generic models that capture the limit

of vanishing τ, for which we take the nonprincipal ultrafilter
induced by the family of open regular sets {(0, 1/n) : n ∈ N}.
From the structure of the sheaf defined above, limit elements in
the generic model coming from the U sort with t = 0 must
approach Dirac’s delta in position.

2. On the other hand, the generic metric model we obtain by
taking the nonprincipal ultrafilter induced by the family of
open regular sets {(n,∞) : n ∈ N} must contain limit elements
that represent Dirac’s distributions in momentum space.
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Whence all this?

▶ Laurent Schwartz’s work on distributions
▶ Schwartz spaces for position and momentum operators
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Back to the Schwartz Space - and to the Sheaf

construction

One motivation: Dirac’s distribution in L2(R):

lim
τ→0

1

τ
√
π
e−x

2/τ2 = δ(x) (3)

(with the limit taken in the sense of distributions). This suggests
that an imperfect2 representation ϕτ(x, x0) for the physical vector
state |x0⟩ in L2(R) is

ϕτ(x, x0) =
1

τ
√
2πh̄

e−(x−x0)
2/2h̄τ2 . (4)

The family of elements {ϕτ(x, x0)} is a subset of the Schwartz space
and, with the inner product in L2(R), we find that

⟨ϕτ(x, x0), ϕτ(x, x1)⟩ =
∫∞
−∞ dxϕτ(x, x0)ϕτ(x, x1) = ϕ√

2τ(x1, x0).

(5)
2In the sense of “up to τ”
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Imperfect propagator at the fiber Eτ

After many calculations we get an ugly expression for the imperfect
propagator at the fiber Eτ:

⟨x1, U(t)x0⟩ =⟨ϕτ(x, x1), ϕ(τ,it/m)(x, x0)⟩U (6)
=ϕ(τ,it/m)(x1, x0) (7)

=
1√

2π(τ2 + it/m)
e−(x1−x0)

2/2h̄(τ2+it/m) (8)

Letting τ→ 0, we recover the exact form for the quantum
mechanical amplitude; (with any nonprincipal ultrafilter induced by
the family of open regular sets {(0, 1/n) : n ∈ N}).

Thus in the
Generic model A[F] we recover the exact propagator as a limit
element.
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Conclusions

▶ The classical connection between Robinson forcing and model
companions... and Fraïssé / Hrushovski limits

▶ The long quest by Zilber for Structural Approximation
▶ Vaught / Harnik: Approximation and Preservation — and

possibilities for current work in L1κ
▶ Shelah-Vasey shed light on AECs but also possibly on forcing

axioms
▶ Sheaf forcing seems to unify in a different way (and responds to

Zilber’s questions)
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Continúan los temas. . . ¡Mil gracias!
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Chapter 4

Continuous Model Theory
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Continuous Model Theory - Origins

Although the origins of CMTh go
back to Chang & Keisler (1966), and
in some (restricted) ways to von
Neumann’s Continuous Geometry
recent takes on Continuous Model
Theory are based on formulations
due to Ben Yaacov, Usvyatsov and
Berenstein of Henson and Iovino’s
Logic for Banach Spaces.
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Continuous predicates and functions

Definition
Fix (M,d) a bounded metric space. A continuous n-ary predicate is
a uniformly continuous function

P :Mn → [0, 1].

A continuous n-ary function is a uniformly continuous function

f :Mn →M.



Continuous Model Theory

Metric structures

Therefore, metric structures are of the form

M =
(
M,d, (fi)i∈I, (Rj)j∈J, (ak)k∈K

)

where the Ri and the fj are (uniformly) continuous functions with
values in [0, 1], the ak are distinguished elements ofM.
Remember: M is a bounded metric space.

Each function, relation must be endowed with a modulus of
uniform continuity.
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Examples of FO metric structures

Example
▶ Any FO structure, endowed with the discrete metric.

▶ Banach algebras (bounding them).
▶ Hilbert spaces with inner product as a binary predicate.
▶ For a probability space (Ω,B, µ), construct a metric structure M based on

the usual measure algebra of (Ω,B, µ).
▶ Representations of C∗-algebras (Argoty, Berenstein, Ben Yaacov, V.).
▶ Valued fields.
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The syntax

1. Terms: as usual.
2. Atomic formulas: d(t1, tn) and R(t1, · · · , tn), if the ti are

terms. Formulas are then interpreted as functions into [0, 1].
3. Connectives: continuous functions from [0, 1]n → [0, 1].

Therefore, applying connectives to formulas gives new
formulas.

4. Quantifiers: supxφ(x) (universal) and infxφ(x) (existential).
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Interpretation

The logical distance between φ(x) and ψ(x) is
supa∈M |φM(a) −ψM(a)|.
The satisfaction relation is defined on conditions rather than on
formulas.

Conditions are expressions of the form φ(x) ≤ ψ(y), φ(x) ≤ ψ(y),
φ(x) ≥ ψ(y), etc.
Notice also that the set of connectives is too large, but it may be
“densely” and uniformly generated by 0, 1, x/2,

.
−: for every ε, for

every connective f(t1, · · · , tn) there exists a connective
g(t1, · · · , tn) generated by these four by composition such that
|f(⃗t) − g(⃗t)| < ε.
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Continuous Model Theory

Stability Theory

▶ Stability (Ben Yaacov, Iovino, etc.),

▶ Categoricity for countable languages (Ben Yaacov),
▶ ω-stability,
▶ Dependent theories (Ben Yaacov),
▶ Not much geometric stability theory: no analog to

Baldwin-Lachlan (no minimality, except some openings by
Usvyatsov and Shelah in the context of ℵ1-categorical Banach
spaces),

▶ NO simplicity!!! (Berenstein, Hyttinen, V.),
▶ Keisler measures, NIP (Hrushovski, Pillay, etc.).
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"Continuous Model Theory" beyond First Order

Several contexts, some unexplored so far.
1. Metric Abstract Elementary Classes (Hirvonen, Hyttinen -
ω-stability, V. Zambrano - superstability, domination, notions
of independence): an amalgam of the power of Abstract
Elementary Classes with metric ideas.

2. Continuous Lω1ω. So far, no published results as such. There
are however “Lindström theorems” for Continuous First
Order due to Caicedo and Iovino.

3. Sheaves of (metric) structures. Our work with Ochoa,
motivated by problems originally in Chemistry. Back to main .
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